Dense neuronal reconstruction through X-ray holographic nano-tomography

Kuan, Aaron, Jasper Phelps, Logan Thomas, Tri M. Nguyen, Julie Han, Chiao-Lin Chen, Anthony Azevedo, et al. 2020. “Dense neuronal reconstruction through X-ray holographic nano-tomography”. Nat Neurosci 23 (12): 1637–1643.

Abstract

Imaging neuronal networks provides a foundation for understanding the nervous system, but resolving dense nanometer-scale structures over large volumes remains challenging for light microscopy (LM) and electron microscopy (EM). Here we show that X-ray holographic nano-tomography (XNH) can image millimeter-scale volumes with sub-100-nm resolution, enabling reconstruction of dense wiring in Drosophila melanogaster and mouse nervous tissue. We performed correlative XNH and EM to reconstruct hundreds of cortical pyramidal cells and show that more superficial cells receive stronger synaptic inhibition on their apical dendrites. By combining multiple XNH scans, we imaged an adult Drosophila leg with sufficient resolution to comprehensively catalog mechanosensory neurons and trace individual motor axons from muscles to the central nervous system. To accelerate neuronal reconstructions, we trained a convolutional neural network to automatically segment neurons from XNH volumes. Thus, XNH bridges a key gap between LM and EM, providing a new avenue for neural circuit discovery.
Last updated on 02/27/2023